
 

i 
 

University College of Southeast Norway 
Faculty of Technology 

 
Master’s Thesis  

Study programme: Systems and Control Engineering(SCE) 
Spring/Autumn 2016 

Teghese IKOKO 

Model Predictive Control using DeltaV of the 

Quadruple Tank Process. 
 

  

 
  



 

  

___ 

ii 
 

 
 

MASTER’S THESIS, COURSE CODE FMH606 

Student:  Teghese Ikoko 

Thesis title: Model Predictive Control using DeltaV of the Quadruple Tank Process. 

 

Signature:   

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Number of pages: 70 

Keywords: Model Predictive Control, DeltaV, System Identification, DSR, Quadruple Tank Process, 

MATLAB 

Supervisor: David Di Ruscio                                                                            Sign: . . . . . . . . . . . . . 

2
nd

 supervisor: Rune Andersen                                                                            Sign : . . . . . . . . . . . . . 

Censor:                                                                 Sign : . . . . . . . . . . . .  

External partner: Emerson Process Management 

Availability:  

Archive approval                                                                 Date : . . . . . . . . . . . . . 

 

 

 

Abstract: 

Model predictive control is widely used in process industries for multivariable systems. The Quadruple Tank 
Process (QTP), a 2-input, 2-output system is presented. The strong interactions between the input and output 
variables make this process very challenging to control. Using first principle, a non-linear model of the QTP was 
developed.  
The major objective in this work is to investigate the use of the MPC strategy in DeltaV to control the Quadruple 
tank. A model of the process must be present before MPC can be implemented. DeltaV MPC creates a step 
response model of the process using input and output data of the process. The modelling technique in DeltaV 
(step response modelling) didn’t give a correct representation the Quadruple tank process.   
To compare this modelling technique, the subspace system identification method (DSR) was used. The DSR 
method produces state space model matrices from known input and output data. Validation results for the DSR 
showed the modelling results were more accurate when compared to the modelling technique in DeltaV.  The 
mean square error was used as a basis of comparing these two methods. All simulations were done using input 
and output data logged from the real plant. 
The default setting of the generated controller in DeltaV MPC didn’t give good tracking because of the poor 
models of the process. Tuning of this controller was done to improve performance. 
To achieve better control results of the QTP, the state space model identified by the DSR method was also used 
in the implementation of MPC using MATLAB. This resulted in a more robust controller. 
DeltaV MPC was used to control a SISO system (2-tank process), and much better results were achieved when 
compared to the MIMO system (QTP) 
The DSR system identification method was compared with the model prediction strategy in DeltaV MPC for both 
the MIMO and SISO systems, and the DSR showed better results especially in the MIMO systems. But overall, the 
DSR gave better results for both the MIMO and the SISO systems- 
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1 Introduction 

This introductory chapter gives an overview of this thesis work. The Quadruple tank process is 

presented; the technique of Model Predictive control and the DeltaV control system are 

introduced. Previous work on the Quadruple tank, the task of this thesis work, and an outline 

of the different chapters are also shown. 

1.1 Background 

Different industries ranging from oil and gas, petrochemical industries, manufacturing, 

refineries, pharmaceuticals, telecommunication, food industries requires one or more process 

variable(s) to be controlled. Process control industries have evolved over the years in terms of 

complexities in their plants and how these plants are controlled. Most industrial processes 

require control of at least two variables. Each of the input signals (variable that is 

manipulated) may affect one or more output signals (variable that is controlled). Many real 

time applications of MIMO (multiple input, multiple output) systems have interactions where 

an input affects more than one controlled variable. This complex interaction between the 

input and output signals makes it more difficult to control a multivariable system when 

compared to SISO (single input, single output) systems. The way the pairing of the 

input/output pairs is done is very crucial in managing these interactions and achieving the 

desired control objective[1]. Cross coupling poses a major challenge in MIMO systems. 

 

In 1996, the Quadruple Tank Process(QTP), a multivariable process with two inputs and two 

outputs was developed by Johansson et al [2] to teach and practice the diverse dynamics of 

multivariable control theory. The quadruple tank was built here in HSN for the same purpose. 

In the past, different controllers have been designed to control both the linear and non-linear 

models of the QTP. A multivariable predictive PI(D) controller was implemented to control the 

QTP [3]. The Model Predictive Controllers strategy with integral action was used to control 

the QTP [4], [5], [6]. The IMC (Internal Model Control) and DMC(Dynamic Matrix Control) 

strategies was employed by Gatzke et al to control the non-linear model of the QTP [7]. A 

non-linear MPC was implemented for the control of the QTP [8] . 
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1.2 Overview of the QTP 

The Quadratic Tank Process consists of 4 differently inter-connected tanks with two pumps 

and two level sensors. The inputs to the system are the voltages to the two pumps. Pump 1 

extracts water from the reservoir to tanks 1 and 4 while Pump 2 extracts water from the 

reservoir and discharge to Tanks 2 and 3. The outputs are the voltages from the level sensors. 

The objective is to control the level of Tanks 1 and 2. More details of the QTP will be 

discussed in later chapters.  

1.3 Objective of the thesis 

The objective of this thesis work is to investigate the use the Model Predictive Control 

strategy in DeltaV1 to control the level of the two lower tanks in a QTP.  

Building a control structure entails much more than just designing a controller. According to 

Skogestad and Postlethwaite [9], building a control structure involves first identifying the 

plant, getting a simplified model of the plant, deciding the input signals(manipulated 

variables) and the output signals (controlled variables), the choice and design of controller , 

implementation, testing, validation and tuning of the designed controller. These build up to 

meeting the controlling objective will be presented in this thesis. 

The major tasks in this work can be subdivided into the following: 

 Development of the model for the Quadruple tank; the model will be developed from 

first principle 

 System Identification of the Quadruple tank model. This will be done both in DeltaV 

and from subspace based  DSR method [10]. These system identification methods will 

be compared using a model performance index. 

 Investigation of the control of the QTP using the inbuilt MPC strategy in DeltaV. 

1.4 Thesis Outline 

This thesis work will be broadly divided into eight (8) chapters. 

The first and introductory chapter will cover a brief outline of the QTP, previous work that has 

been done and the significance of the research work  

                                                      
1
 DeltaV is a proprietary process automation system from Emerson Process Management 
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Chapter 2 covers more details of the quadruple tank process and its key components. The 

non-linear model of the QTP from first principle is also presented. 

Chapter 3 describes the principle of Model Predictive Control (MPC). The fundamentals and 

principles of the MPC strategy in DeltaV is also introduced in this chapter. 

Chapter 4 covers all aspects of developing the model of the process to be used for the 

implementation of MPC. The Integral Absolute Error (IAE) and Mean Square Error (MSE) 

performance indices will be discussed and used to compare the derived models. 

Chapter 5 shows the implementation of the MPC in DeltaV, steps in programming in DeltaV 

MPC, the model identification and validation and the generation of the controller. The model 

identification using DSR method is also presented. 

The results from the implementations and discussion of results will be discussed in Chapters 6 

and 7 respectively. 

Chapter 8 will cover the conclusion and recommendation for further work. 
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2 The Quadruple Tank 

This chapter gives a comprehensive depiction of the process plant: the quadruple tank 

process and its key components. The non-linear model of the QTP from first principle is also 

presented. 

2.1 The Quadruple Tank 

The set-up of the QTP consists of four interacting tanks, two pumps, two level sensors and 

two valves. Tanks 1 and Tanks 2 are positioned below Tanks 3 and 4. Tanks 1 and 2 receive 

water from tanks 3 and 4 by gravitational action. The input to the process are the voltages to 

the pumps 𝑢1 and  𝑢2 . The voltages from the level sensors 𝑦1  and 𝑦2  are the output of the 

process. A schematic diagram of the QTP  is as shown in Figure 2-1. 

A reservoir placed below tanks 1 and 2 also serves to accumulate the water from these tanks. 

Pump 1 extracts water from the reservoir to tanks 1 and 4 while Pump 2 extracts water from 

the reservoir and discharge to Tanks 2 and 3. The water flow is split using two 3-way valves to 

feed these tanks. The valve position gives the ratio in which the flow from the pump is divided 

between the upper and lower tanks.  

The objective is to control the water level in the lower tanks; which are the levels in Tank-1 

and Tank-2. The strong coupling between the tanks creates a major difficulty in controlling 

the QTP. 
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Tank 2

Tank 4

Pump 2
Pump 1

Valve 2Valve 1

Reservoir

Tank 3

Tank 1

 

Figure 2-1: Schematic diagram of the quadruple tank 

Figure 2-1 shows that the output of Tank 1 depends on Tank 3 and position of Valve 1 while 

the output of tank 2 depends on Tank 4 and the position of Valve 2. 

The functions of the different parts of the quadruple tank process are summed up in Table 

2-1 

Table 2-1: Parts of the QTP and their functions 

PART FUNCTION 

Pump 1 Supplies water from the reservoir to tanks 1 and 4 

Pump 2 Supplies water from the reservoir to tanks 2 and 3 

Valve 1 Used to manually control the water flow in tanks 1 and 4 

Valve 2 Used to manually control the water flow in tanks 2 and 3 

Level Sensor 1 Used to control the liquid level in tanks 1 and 4 

Level Sensor 2 Used to control the liquid level in tanks 2 and 3 

Reservoir Stores the accumulated water  
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2.2 Development of Non Linear Model 

Various models (both linear and nonlinear models) of the quadruple tank process exist and 

have been presented in different literatures [11], [2], [12], [13]. 

It is very important to understand the dynamics behavior of a system/process with time. 

Models show this dynamic behavior.  Models can be built from first principle mechanics-

based (such as physics, chemistry) or from system identification methods (that is by measured 

input and output data) [14].  

As shown in the schematic diagram of the QTP in Figure 2-1, the following assumptions were 

made prior to the development of the model: 

 The input to pump 1 is 𝑢1 

 The input to Pump 2 is 𝑢2 

 The two valves are set to make the process easy to control. The valves are set in a way 

that it defines the parameters [𝛾1𝛾1] ∈  [0  1] 

 The flow to Tank 1 is proportional to 𝛾1 

 The flow to Tank 4 is proportional to 1 − 𝛾1. That is if 𝛾1 = 1 , then all flow from pump 

goes to Tank1, and if 𝛾1 = 0, then the all the flow goes to Tank 4 

 The flow to Tank 2 is proportional to 𝛾2 

 The flow to Tank 3 is proportional to 1 − 𝛾2. Similarly, at is if 𝛾2 = 1 , then all flow 

from pump goes to Tank 2, and if 𝛾2 = 0 then the all the flow goes to Tank 3 

 The flow through Tank 1 when the input voltage 𝑢1 is applied is 𝑘1𝑢1. 

 The flow through Tank 2 when voltage 𝑢2 is applied is 𝑘2𝑢2.  

 The flow through Tank 1 after crossing valve 1 is  𝛾1𝑘1𝑢1 

 The flow through tank 4 after crossing valve 1 is (1 − 𝛾1)𝑘1𝑢1 

 The flow through tank 2 after crossing valve 2 is 𝛾2𝑘2𝑢2 

 The flow through tank 3 after crossing valve 2 is (1 − 𝛾2)𝑘2𝑢2 

The mathematical modelling is developed from the mass balance equation which states that 

the rate of accumulation of mass in the system is given as the difference between the mass 

flow rate into the system and the mass flow rate out of the system. The rate of accumulation 

of mass in the system 
𝑑𝑚

𝑑𝑡
 ,is expressed as;  

 𝑑𝑚

𝑑𝑡
=  �̇�𝑖 − �̇�𝑜 

(3.1) 
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Where �̇�𝑖 the mass flow rate into the system and �̇�𝑜 is the mass flow rate out of the system. 

Expressing in terms of volumetric flow, it follows that 

 
𝜌
𝑑𝑉(𝑡)

𝑑𝑡
=  𝜌�̇�𝑖 − 𝜌�̇�𝑜 

(3.2) 

Where 𝜌  is the density of the liquid. Since the liquid across all tanks is water, then the density 

is assumed constant. Hence 

 𝑑ℎ(𝑡)

𝑑𝑡
=
1

𝐴
 (�̇�𝑖 − �̇�𝑜) 

(3.3) 

Where 𝐴 and ℎ  is the cross sectional area and height of the tank respectively. 

Using Bernoulli and the Torricelli equation, and equating the potential energy PE to the kinetic 

energy KE 

 𝑃𝐸 = 𝐾𝐸 (3.4) 

 
𝑚𝑔ℎ = 

1

2
𝑚𝑣2 

(3.5) 

This follows that the velocity, 𝑣 is given as 

 𝑣 =  √2𝑔ℎ (3.6) 

Multiplying the velocity by the area of the outlet hole of the tank 𝑎𝑖, then the volumetric flow 

rate 𝑞𝑜𝑢𝑡 𝑖of tank 𝑖 for all  𝑖∀1.2.3.4 then becomes 

 𝑞𝑜𝑢𝑡 𝑖  =  𝑎𝑖𝑣 =  𝑎𝑖√2𝑔ℎ𝑖  
(3.7) 

 

Applying mass balance on the different tanks, the non-linear model of the QTP is given by the 

following state equations.  

 
𝐴1
𝑑ℎ1
𝑑𝑡

=  𝛾1𝑘1𝑣1 + 𝑎3√2𝑔ℎ3  −  𝑎1√2𝑔ℎ1 
(3.8) 

 
𝐴2
𝑑ℎ2
𝑑𝑡

=  𝛾2𝑘2𝑣2 + 𝑎4√2𝑔ℎ4  −  𝑎2√2𝑔ℎ2 
(3.9) 

 
𝐴3
𝑑ℎ3
𝑑𝑡

=  (1 − 𝛾2)𝑘2𝑣2 + 𝑎3√2𝑔ℎ3 
(3.10) 

 
𝐴4
𝑑ℎ4
𝑑𝑡

=  (1 − 𝛾1)𝑘1𝑣1 + 𝑎4√2𝑔ℎ4 
(3.11) 

Where the definition of terms is as shown in Table 2-2 

Table 2-2: Parameter definitions for the Non Linear model of the QTP 

Parameter Description Unit 
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𝐴𝑖  Cross section area of tank 𝑖 (𝑐𝑚)2 

ℎ𝑖  Level of water of  tank 𝑖 𝑐𝑚 

𝑎𝑖 Cross section area of outlet hole of tank 𝑖 (𝑐𝑚)2 

𝑖 1,2,….4 − 

𝑣1 Input signal to Pump 1 𝑉𝑜𝑙𝑡 

𝑣2 Input signal to Pump 2 𝑉𝑜𝑙𝑡 

𝛾1 Valve constant of valve 1 − 

𝛾2 Valve constant of valve 2 − 

𝑘1 Gain of pump 1 𝑐𝑚3𝑉−1𝑠−1 

𝑘2 Gain of pump 1 𝑐𝑚3𝑉−1𝑠−1 

𝑔 Gravitational acceleration  𝑐𝑚/𝑠2 

 

 

According to Johansson [12], the QTP is said to be in minimum and non-minimum phase 

based on the location of the multivariable zeros.  The system is said to be in the minimum and 

non-minimum phase when Equations (3.12) and (3.13) are satisfied respectively.  

 

 0 < 𝛾1 + 𝛾2 < 1 (3.12) 

 1 < 𝛾1 + 𝛾2 ≤ 2 (3.13) 

 

Johansson further stated that the tank is easier to control when it is in the minimum phase. 

For all simulations done in this work, valve constants 𝛾1and 𝛾2were chosen as 0.7 and 

0.6 respectively. And as such minimum phase is considered for all simulations. 

The tank parameter values are summed up in Table 2-3.[11] 

Table 2-3: QTP parameter values 

Tank Parameter Value Unit 

𝐴1, 𝐴4 28 (𝑐𝑚)2 

𝐴2, 𝐴3 32 (𝑐𝑚)2 

𝑎1, 𝑎4 0.071 (𝑐𝑚)2 

𝑎2, 𝑎3 0.057 (𝑐𝑚)2 

𝛾1 0.7 − 
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𝛾2 0.6 − 

𝑘1 3.33 𝑐𝑚3𝑉−1𝑠−1 

𝑘1 3.35 𝑐𝑚3𝑉−1𝑠−1 

𝑔 981 𝑐𝑚/𝑠2 
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3 Model Predictive Control 

In this chapter, the principle of Model Predictive Control (MPC) is described and presented. 

The fundamentals and principles of the MPC strategy in DeltaV is also introduced.  

3.1 Introduction to MPC 

The history of MPC technology dates back as far as the 1960’s from the work of Kalman et al 

[15] . The first generation of MPC technology (the Dynamic matrix Controller DMC and the 

Identification and Command IDCOM) were first designed in the 1970’s. The second 

generation of MPCs, the quadratic dynamic matrix control (QDMC) were developed in the 

1980’s. The (IDCOM-M and Shell Multivariable Optimizing Controller SMOC, Hierarchical 

constraint control HIECON), the Predictive Control Technology, PCT and the Robust model 

predictive control, RMPC are considered to be the third generation of MPC controllers, and 

these came into existence in the 1990’s. The fourth generation of MPC are the Robust Model 

Predictive control technology, RMPCT (a fusion of the RMPC and the PCT) developed in 1995 

and the Dynamic Model Control Package, DMC-plus (a fusion of the SMCA and DMC) 

developed in 1998 [16]. 

 

MPC works by creating and solving a new optimization problem during every time step. It 

predicts future output values or states from the current time. The MPC uses a model of a 

system to calculate a predicted output signal over a prediction horizon in the future. A new 

optimization is created at each control interval within the prediction horizon by taking a new 

control input and feeding it into the system at each time step, while still considering the 

constraints [17]. This ability to handle constraints is integrated in the structure of MPC and 

this has made it more popular and more advantageous than other classical controllers such as 

the PID.  MPC is also very effective in controlling MIMO systems because of the optimal way it 

handles interaction between the controller variables[17]. MPC can handle delays (both 

process input and output delays) in a very efficient way. 

 

However, one major drawback of MPC is that a model of the plant or process must be present 

before the controller is implemented. The high computational time involved in its 

implementation also poses a difficulty in real time applications. Since the optimization 
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problem has to be solved within each of these sampling times, choosing a suitable sampling 

time can also pose another challenge. 

 

An MPC algorithm consists of the following: 

 Cost Function 

The cost function or control objective is a criterion that measures the difference between the 

future outputs 𝑦𝑘+1|𝐿 and a specified reference  𝑟𝑘+1|𝐿 while considering that the control 

signal  𝑢𝑘 is costly. The cost or objective function is used to solve the optimization problem. 

The objective is a measure of the behavior of the process over the prediction horizon. [17] 

Different objective criterions can be implemented in MPC; ranging from economic objectives 

such as profit maximizing, loss or cost minimization, setpoint tracking, sum of squared error, 

sum of absolute errors etc. 

 Constraints 

A constraint is a limitation or restriction; it is the condition in an optimization problem which 

the solution must satisfy. The ability to handle constraints is integrated in the structure of 

MPC. Commonly considered constraints are the system input amplitude constraints, the 

system input rate of change constraints and the process output constraints [17]. 

The system input amplitude constraint is amplitude constraints on the input signal written 

mathematically as  

 𝑢𝑘|𝐿
𝑚𝑖𝑛 ≤ 𝑢𝑘|𝐿 ≤ 𝑢𝑘|𝐿

𝑚𝑎𝑥  (3.1) 

 

The system input rate of change constraint are limitations on the rate of change. This is 

written mathematically as  

 ∆𝑢𝑘|𝐿
𝑚𝑖𝑛 ≤ 𝑢𝑘|𝐿 ≤ ∆𝑢𝑘|𝐿

𝑚𝑎𝑥 (3.2) 

 

Process output constraints are constraints on the process output which can be 

mathematically represented by  

 𝑦𝑚𝑖𝑛 ≤ 𝑦𝑘+1|𝐿 ≤ 𝑦
𝑚𝑎𝑥  (3.3) 

 

Where 𝐿 is the prediction horizon. 
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 Model of the Process 

A process model that predicts the future process output up to the prediction horizon must be 

present for MPC to be implemented. The unavoidable existence of a model is the major 

drawback to the implementation of MPC. Mechanistic models are developed from first 

principles where possible, otherwise models can be identified from Blackbox or Subspace 

methods such as DSR method by Di Ruscio[10]. The model is used to evaluate the predicted 

output 𝑦𝑘+1|𝐿 and the states over a horizon in the future[17].  

 

A conceptual picture of MPC is shown in Figure 3-1 and Figure 3-2. MPC uses the model of the 

process to predict future outputs based on the current input values. Then it uses the 

predicted  information to calculate an optimal value of future inputs with respect to a defined 

cost function [18]. 

 

Optimizer Process

Model

rk+1|L 

Setpoint 

Future 
error

Future 
input

Output
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Constraints
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Function

+
_

Model Predictiove Controller

 

Figure 3-1: Conceptual picture of MPC-1 [18] 
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Figure 3-2: Conceptual picture of MPC-2 [18] 

 

3.2 Defining Prediction Models 

The prediction model is an integral part of the optimization problem which primarily 

describes the relationship between future outputs and future control inputs. MPC 

applications differ in the ways their prediction models are developed from the models of the 

process[17]. Prediction models are developed from state space models, Finite Impulse 

Response (FIR) and step response models, transfer function models, the ARMAX models etc. 

3.2.1 Prediction Models from State Space Models 

Prediction models from state space models are very popular amongst variants of MPCs 

because of the ease of deriving them. It is also relatively easy and common for models like 

transfer function models, ARX models, FIR etc. to be transformed to state space models for 

use in MPC.  

Given the general form of a state space model described by 

 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 (3.4) 
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 𝑦𝑘  = 𝐷𝑥𝑘  (3.5) 

The prediction model can be described simply by 

 𝑦𝑘+1|𝐿 = 𝐹𝐿𝑢𝑘|𝐿 + 𝑝𝐿 (3.6) 

Where  

 𝐹𝐿 = [𝑂𝐿𝐵    𝐻𝐿
𝑑] (3.7) 

 𝑝𝐿 = 𝑂𝐿 𝐴 𝑥𝑘 (3.8) 

 𝑥𝑘 is the state of the process which can be calculated simply from the known past inputs and 

outputs as shown by Di Ruscio [19]. 

Where 𝑂𝐿 is the extended observability matrix of the pair 𝐴 and 𝐷.  

 𝐻𝐿
𝑑 is the Toeplitz matrix of impulse responses  

𝐿 is the prediction horizon and 𝐹𝐿  ∈ ℝ
𝐿𝑚×𝐿𝑟 is a constant matrix derived from the model of 

the process. 𝑝𝐿 ∈ ℝ
𝐿𝑚  is a vector dependent on the number of inputs and outputs. 

 

In cases where it is not possible to measure or compute the state, it can be estimated using a 

state observer such as a Kalman filter.  

Equation (3.6) will be the basis for the MPC algorithm to compute the predicted outputs in 

the future. 

Given an objective function defined as 

 𝐽𝑘 = (𝑦𝑘+1|𝐿 − 𝑟𝑘+1|𝐿)
𝑇
𝑄(𝑦𝑘+1|𝐿 − 𝑟𝑘+1|𝐿) + 𝑢𝑘|𝐿

𝑇 𝑃𝑢𝑘|𝐿 (3.9) 

Where 𝐽𝑘 is the objective function,  𝑢𝑘|𝐿  is the input, and 𝑦𝑘|𝐿 is output. 𝑄 and 𝑃 are user 

defined symmetric and positive weighting matrices.  𝑟𝑘|𝐿 is the reference. 

Substituting 𝑝𝐿 to the objective function, reduces it to a quadratic function of standard form 

 𝐽𝑘 = 𝑢𝑘|𝐿
𝑇 𝐻𝑢𝑘|𝐿 + 2𝑓

𝑇𝑢𝑘|𝐿 + 𝐽0  (3.10) 

Where 

𝐻 = 𝐹𝐿
𝑇𝑄𝐹𝐿 + 𝑃 

𝑓 =  𝐹𝐿
𝑇𝑄(𝑃𝐿 − 𝑟𝑘+1|𝐿) 

𝐽0 = (𝑃𝐿 − 𝑟𝑘+1|𝐿)
𝑇𝑄(𝑃𝐿 − 𝑟𝑘+1|𝐿) 

 

The optimization problem is thus minimizing the objective function 𝐽𝑘 with respect to 𝑢𝑘|𝐿. 

Where the solution is given by 𝑢𝑘|𝐿
∗ = −𝐻−1𝑓 
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3.2.2 Prediction Models from FIR and step response models 

Prediction models can be developed from the FIR and step response models. Considering the 

state space model defined above in Equations (3.4) and (3.5), an expression for  

 𝑦𝑘 = 𝐷𝐴
𝑖𝑥𝑘−𝑖  + 𝐷𝐶𝑖𝑢𝑘−𝑖|𝑖 (3.11) 

Where 𝐶𝑖 is the extended controllability matrix. 

Assuming that the system is stable, then 𝐴𝑀 ≈ 0 when 𝑀 = 𝑖 ≥ 1 is large. Then we have that 

 𝑦𝑘 = 𝐷𝐶𝑀𝑢𝑘−𝑀|𝑀 (3.12) 

Where 𝐷𝐶𝑀 is a matrix of impulse response matrices and 𝑀 is the model horizon 

 

 𝐷𝐶𝑀 = [𝐻1 𝐻2 … 𝐻𝑀] =  [𝐷𝐵 𝐷𝐴𝐵 … 𝐷𝐴𝑀−1𝐵] (3.13) 

The input output model defined in equation (3.12) is the FIR model which can be used to 

express  𝑦𝑘+1  and subtracting 𝑦𝑘 gives the step response model; 

 𝑦𝑘+1 = 𝑦𝑘 + 𝐶𝑀∆𝑢𝑘+1−𝑀|𝑀 (3.14) 

 ∆𝑢𝑘+1−𝑀|𝑀 = 𝑢𝑘+1−𝑀|𝑀 − 𝑢𝑘−𝑀|𝑀 (3.15) 

 

A prediction model can be defined from Equations (3.12) and (3.14).  

It is worthy to note here that model identification in DeltaV MPC is based on a step response 

being created from the FIR and the ARX models. Details will be explained in the next section. 

The Dynamic Matrix Controller (DMC) is an example of an algorithm of MPC that uses the step 

response model.  

 

3.3 MPC Strategy in DeltaV 

DeltaV is a process automated system from Emerson Process Management. DeltaV has the 

advantage of a very friendly common operator interface, increased reliability, it is very easy to 

configure, and has a user friendly testing environment.  

DeltaV MPC works on the already discussed principle of MPC where the controller learns from 

the past to predict the future output by using the mathematical model of the process.  

The DeltaV MPC function blocks are primarily used for implementing control of different 

interactive processes in DeltaV MPC. Three different MPC function blocks exist in DeltaV and 

these are the MPC, MPCPro and MPCPlus function blocks, they are as shown in Figure 3-3. 
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Figure 3-3: MPC blocks in DeltaV 

 

The DeltaV Predict is used to commission the MPC function block while the DeltaV PredictPro 

is used to commission MPC-PRO and MPC-PLUS function blocks. For the purpose of the 

controlling the QTP (2 inputs and 2 outputs), the MPC function block (allows for a maximum 

of 8X8 input-output interaction) will be used and hence discussed further.  

 

The DeltaV MPC function block controls interactive processes with consideration for the 

measurable operating constraints and disturbances. The MPC function block is launched in 

Control Studio in DeltaV environment.  

 

In DeltaV Predict application, an automated test of the process is run by automatically 

collecting data from the process, these data is used to create a step response of the process.  

The DeltaV Predict implements MPC technology in controlling small and medium sized 

multivariable processes within different measurable operating constraints and disturbances. 

The DeltaV MPC function block is used to control an interactive process while taking into 

consideration the measurable operating constraints and measurable disturbances. 

Multivariable control is implemented effectively in the DeltaV system with the MPC function 

block. The MPC function block is used by simply dragging and dropping into control studio, 

and downloading afterwards. The input and outputs of the MPC function block is configured 

in DeltaV control studio, in a manner that suits your control structure.  

The inputs to the MPC function block can be any of the following: 

 Controlled variable (CNTRL): The controlled parameter which is maintained at a 

setpoint by adjusting the manipulated variable 
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 Disturbance(DSTRB): The disturbance on constraint and controlled parameter whose 

impact is reduced by adjusting the manipulated input  

 Constraint(CNSTR) 

The output of the MPC function block is  

 Manipulated variable (MNPLT): The manipulated output from the function block. This 

variable is adjusted either automatically by the function block or manually by the user. 

 

The controlled variable (CV), the manipulated variable (MV), the constraint variables, and the 

disturbance variables are defined by the user in the MPC function block. It is imperative to 

identify these variables during the programming in DeltaV. 

3.3.1 Generation of MPC Controller in DeltaV 

The MPC controller minimizes future control errors and control moves. Generation of the 

MPC controller in DeltaV is fully automated. The control calculations assume that your 

process response is reasonably linear over its normal operating range.  If the process model 

has been correctly identified, the default setting of controller generated for the process gives 

optimal performance. However if the default controller setting do not give good tracking of 

setpoint, adjustments can be made as an expert user. 

MPC in DeltaV has its roots in Dynamic Matrix Control (DMC) where a dynamic matrix is  built 

from step responses such that the process outputs can be predicted from manipulated 

variables over the control horizon. 

 

The MPC Controller minimizes the squared error of a controlled variable over the prediction 

horizon and also the squared error of the controller output over the control horizon in the 

following way 

 

 𝑚𝑖𝑛( 𝛤𝑦(𝐶𝑉(𝑘) − 𝑅(𝑘))2 + (𝛤𝑢∆𝑈(𝑘))2  ) 

                                ∆𝑈(𝑘) 
(3.16) 

 

Where 𝑝 is the prediction horizon 

𝑐 is the control horizon 
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CV(k) is the controlled output p-step ahead prediction vector 

R(k) is the p-step ahead setpoint vector  

∆𝑈(𝑘) is the c-step ahead incremental controller output moves vector 

Γ𝑦 is a diagonal penalty matrix on the controlled output error 

Γ𝑢   is a diagonal penalty matrix on the control moves 

The solution for the process with dynamic matrix S𝑛 satisfying Equation (3.16) is in the form  

 

   ∆𝑈(𝑘) = (𝑆𝑛𝑇𝛤𝑦𝑇𝛤𝑦𝑆𝑛     +   𝛤𝑢𝑇𝛤𝑢)−1𝑆𝑛𝑇 𝛤𝑦𝑇𝛤𝑦𝐸𝑃(𝑘) (3.17) 

 

Where  

S𝑛 is the 𝑝 × 𝑐 process dynamic matrix built from the step responses of dimensions 𝑝 × 𝑐 for 

a SISO model and 𝑝𝑛 × 𝑐𝑚 for a MIMO model with 𝑚 manipulated inputs and 𝑛 controlled 

outputs. 

𝐸𝑃(𝑘) is the error vector over the prediction horizon 𝑝 

 

3.3.2 The Penalty of moves (POM) and the Penalty of error (POE) 

The POM and the POE are convenient tuning parameters used in getting the desired 

controller performance.  

 POM 

The POM parameter impacts the robustness of the controller. The POM is a basic controller 

tuning parameter at the phase where the controller is been generated, increasing the POM 

makes the controller less aggressive and decreasing it makes the control action more 

aggressive and results a faster control response. The POM is defined independently for each 

of the manipulated variable(s). 

 POE 

The POE is also known as a ‘controlled variable tuning weight’. It allows more weight to be 

given to a specified controlled variable.  

 

However, if the controller performance is satisfactory using the default settings, there is no 

need to alter these parameters. 
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3.3.3 Output Constraints Handling 

 

The MPC configuration does not take any action on the constrained variable except the 

constraint is violated, in which case, the MPC controller changes the working setpoint of the 

selected controlled variable. 

 ∆𝑆𝑃𝐶𝑉 = −𝑟𝐺𝐶𝑉−𝐴𝑉∆𝐴𝑉 (3.18) 

Where  

∆𝐴𝑉is the magnitude of the predicted steady state constraint violation 

𝐺𝐶𝑉−𝐴𝑉is the gain relationship between the constraint variable AV and CV 

𝑟 is the relaxation  factor, which is always less than 1 

∆𝑆𝑃𝐶𝑉 is the change in working setpoint of the controlled variable 
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4 Development of Process Model/System Identification of 

Process Model 

This chapter covers all aspects of developing the model of the process, such that this model 

will be used for the MPC. 

The IAE and MSE performance indices will be discussed and used to evaluate model 

performance. 

4.1 Model identification in DeltaV 

Model identification in DeltaV is based on a step response model. The step response model 

describes the relationship between the process inputs and future outputs over the prediction 

horizon. The step response model is also validated by a support strategy contained as an 

integral part of the model generation. The verified model is then used to generate a 

controller.  

4.1.1 DeltaV Predict Algorithm 

Identification of the step response in DeltaV Predict is done by both the FIR and the ARX. 

Comparing models from these two techniques helps in confirming correct representations of 

predicted models. The FIR has the advantage of not requiring a preliminary knowledge about 

the process while the ARX uses fewer coefficients in the calculation. The model is validated by 

comparing the real process data to the simulated process data. Process optimization is 

achieved by either minimizing or maximizing a selected process input. 

DeltaV Predict uses the step response modelling which makes prediction of process outputs 

available for display in the application. It also computes the predicted error vector, which 

serves as an input to the MPC controller. The MPC function block then develops future 

process outputs as a process state and uses modified state space for the process modelling. 

In a SISO process, the predicted future process output is as shown below 

 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵∆𝑢𝑘  +  𝐹∆𝑤𝑘 (4.1) 

 𝑦0 = 𝐶𝑥𝑘+1 (4.2) 

Where  

𝑥𝑘 = [𝑦
0 , 𝑦1, 𝑦𝑖, … . … . . , 𝑦𝑝−1]

𝑇
is a vector of the future output prediction 0,1.....i,……p-1 

steps ahead at the time 𝑘. 
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𝐴 is a shift operator which is defined by as 𝐴𝑥𝑘 = [𝑦
0 , 𝑦1, 𝑦𝑖, … . … . . , 𝑦𝑝−1]

𝑇
 

𝐵 = [𝑏0, 𝑏1, … , 𝑏𝑖 , . . . , 𝑏𝑝−1]
𝑇

is vector of p step response coefficients 

∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1 is change on the process input/controller output at the time instant k 

∆𝑤𝑘 is the process output measurement-process model output, mismatch resulted from the 

noise, unmeasured disturbances and model inaccuracy. 

𝐹 is the 𝑝 dimension filter vector with unity default values 

𝑃 is the dimension vector with unity default values 

𝐶 is the operator that takes the first component of the 𝑥𝑘+1 vector 

For a multivariable process, with m inputs and n outputs, the vector 𝑥𝑘 has dimension n*p 

and vector B is converted into a matrix with dimension n*p rows and m columns. 

 

The FIR model uses a short horizon process to avoid over fitting the model as it provides an 

initial part of the step response, such that it is enough to evaluate the dead time using a 

heuristic approach. The dead time is then used in the ARX model which has fewer coefficients 

that the FIR. 

In MIMO systems, superposition is applied from each input on every output. The FIR and the 

ARX model for a SISO system is defined by Equations (4.8) and (4.9) respectively. 

 
∆𝑦𝑘 = ∑ℎ𝑖∆𝑢𝑘−1

𝑝

𝑗=1

 (4.3) 

 

Where ∆𝑦𝑘 = 𝑦𝑘 − 𝑦𝑘−1is the change of the process output at the time instant 𝑘,  𝑝 is the 

prediction horizon, ∆𝑢𝑘−1 is the change of the process input at the time instant  𝑘 − 1. 

 

 
𝑦𝑘 = ∑𝛼𝑖𝑦𝑘−1

𝐴

𝑗=1

 +  ∑𝛽𝑖𝑢𝑘−𝑑−1

𝑉

𝑗=1

 (144) 

Where 𝐴 and 𝑉 are auto regressive and moving average orders of ARX with a default value of 

4, 𝛼𝑖and 𝛽𝑖 are the coefficients of the model and 𝑑 is the dead time. 
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4.2 System identification based model 

System Identification uses statistical methods to build mathematical models of dynamic 

systems from measured or observed data [10]. The measured inputs and outputs , measured 

states, measured properties, measured disturbances, feedback signals etc all serves as the 

input, and the model of the system then becomes the output [10] .  

4.3 DSR method of system Identification 

System identification method where subspace method is used to identify a system from a set 

of known input and output data and  also the system order is known as the combined 

Deterministic and Stochastic system and Realization (DSR)  [10]. The complexity of first 

principle models in system identification have made the DSR[10] method become more 

popularly used.  The DSR system identification is a realization based approach for estimating 

the state space models from known input and output data. The DSR method is very easy to 

use and very effective for both SISO AND MIMO systems. 

 

4.3.1 DSR Algorithm 

The primary step in the DSR algorithm is to identify the system order and the extended 

observability matrix from the column space of known data matrix. The DSR algorithm is very 

simple to implement and based on the singular value decomposition. 

The DSR algorithm is implemented in the D-SR toolbox in MATLAB. The DSR algorithm 

estimates the system order and values of the model matrices 𝐴, 𝐵, 𝐷, 𝐸, 𝐹 and the initial 

state vector  𝑥0. 

The algorithm is shown below in the equation (4.5) 

 [𝐴, 𝐵, 𝐷, 𝐸, 𝐹, 𝑥0] = 𝑑𝑠𝑟 [𝑌, 𝑈, 𝐿, 𝑔, 𝐽, 𝑀,   𝑛] (4.5) 

Where 

 

 

 

𝑌 = 

[
 
 
 
𝑦0
𝑇

𝑦1
𝑇

:
𝑦𝑁−1
𝑇 ]
 
 
 

⏟  
𝐾𝑛𝑜𝑤𝑛 𝑑𝑎𝑡𝑎 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

 ∈ ℝ𝑁×𝑚 
(4.6) 
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𝑈 =  

[
 
 
 
𝑢0
𝑇

𝑢1
𝑇

:
𝑢𝑁−1
𝑇 ]

 
 
 

⏟  
𝐾𝑛𝑜𝑤𝑛 𝑑𝑎𝑡𝑎 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

 ∈ ℝ𝑁×𝑟 
(4.715) 

 

𝑔 is the structure parameter used to predict  𝐸. If  𝑔 = 0, then 𝐸 = 0 

𝑁 is the number of samples, 𝑚 is the number of output variables, 𝑟 is the number of input 

variables, 𝐿 is the future horizon that is used for predicting the system order.   

𝐽 is the user-defined size of the past horizon  

𝑛 is the number of states 

A, B, D, E are the matrices of the state space model. 

 

4.4 Model Performance Indices 

The mean square error (MSE) and the integral absolute error (IAE) method will be used to 

compare between the different models, both for the DSR identified models and the model 

identified by DeltaV Predict. 

4.4.1 MSE 

The mean square error (or mean squared deviation) gives a measure of the square of the 

errors, it gives the square of the difference between the real value and the what is 

estimated[20]. 

The MSE is expressed mathematically as 

 
𝑀𝑆𝐸 = 

1

𝑁
∑(𝑥 − �̂�)2
𝑁

𝑖=1

 
(4.8) 

 

Where 𝑁 is the number of the samples or observations. (𝑥 − �̂�)2 is the square of the errors  

The smaller the value of the MSE, the closer the predicted model is to the real process. 

4.4.2 IAE 

The Integral absolute error gives the absolute value of the error between actual and predicted 

output. The IAE is expressed mathematically as  
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𝐼𝐴𝐸 =  ∫ |𝑒|

𝑁

0

𝑑𝑡 =   ∫ |𝑟 − 𝑦|
𝑁

0

𝑑𝑡 
(4.9) 

 

Where 𝑒 is the control deviation error and 𝑁 is the number of the samples or observations. 
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5 Implementation of MPC 

In this chapter, the steps for the programming in DeltaV will be shown, the model 

identification and validation in DeltaV MPC and the generation of the controller.  

The model identification using DSR method will also be shown, and the implementation of the 

MPC with integral action. 

5.1 Collection of Data 

Communication of the QTP with DeltaV was not possible because the input to the QTP 

laboratory plant (pumps) require an input of 0-10Volts. This is not compatible with The DeltaV 

substation (4 to 20mA output signal). It was therefore not possible to connect the QTP 

directly to the DeltaV substation directly. 

However, a set of input and output data has been collected from previous work done by Di 

Ruscio [6] where LabVIEW and a simple DAQ device from National Instruments was used to 

log the data at a sampling time of 0.1seconds. These data was used for the modelling in both 

DSR and DeltaV Predict.  The data matrices are as defined below 

 𝑈 ∈  ℝ𝑁 ×2 (5.1) 

 𝑌 ∈  ℝ𝑁 ×2 (16) 

 

Where 𝑈 is the input; 𝑌 is the output of the process.  

N is the number of samples. 

A simple plot of the input and output of the process is shown in Figure 5-1 and Figure 5-2 

respectively.  
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Figure 5-1: Input signals 

 

Figure 5-2: Output signals 
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5.2 Model Prediction in DeltaV Predict 

Model predictive strategy in DeltaV is based on a dynamic model of the process.  Process 

identification, modelling and controller generation are performed within MPC DeltaV. The 

identified process model and the process inputs are used to predict future variations of the 

process.  

DeltaV Predict uses the Finite Impulse Response (FIR) and the Auto-Regressive with eXternal 

inputs (ARX) modelling techniques. It first creates a step response model; the step response 

model provides an insight into the dynamics between the process outputs and inputs.  

External data from a non DeltaV environment will be used in DeltaV Predict to create a model 

of the process. For best results in using an external data, it is extremely important that the 

data should correctly reflect normal conditions over the operating range of the process. 

Figure 5-3 shows a flow chart of how DeltaV MPC handles external historical data. . 
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response 

coefficients 
and re-verify 
till you have a 

satisfactory 
model

Start DeltaV Predict

Connect DeltaV 
Predict to the MPC 

function block

 

Figure 5-3: Flow chart for implementation in DeltaV MPC using external historical data 

As shown in Figure 5-3, the desired MPC block that references the inputs and outputs of the 

process is created and downloaded. Figure 5-4 shows the MPC blocks used for the QTP with 

the inputs and outputs referenced accordingly.  
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Figure 5-4: Input and Output of process in DeltaV 

 

After the module is downloaded, then DeltaV Predict is started.  The external data is loaded 

into DeltaV Predict, which uses these data and creates a step response model of the process. 

After using DeltaV Predict to identify this model, it is very important to review the model and 

ensure that it reflects the correct dynamics of the process. The validation errors between the 

calculated output and the actual output for the selected data must be within acceptable limit. 

If there is a relatively large validation error, then it is necessary to go back to the step 

response and effect necessary adjustments. 

 

Using data that is not sufficiently excited or data that is very noisy or shows insufficient time 

may lead to unsatisfactory process models. But situations where it is not possible to get 

better process data, it is also possible to correct the model based on the prior knowledge of 

the process. This can be done by studying trends in the measurements or process simulations 

or analyzing the data outside DeltaV. Microsoft Excel or MATLAB can be used to study 

simulations on these data. 

 

Another check for sub optimal models is to view the FIR and the ARX models on the same 

plot, if they differ from each other, then the model is poor. 

After the model has been identified by DeltaV Predict, a controller is generated accordingly. 
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DeltaV Predict provides a simulation environment that enables testing of the MPC strategies 

many times faster than real-time. After getting satisfactory results, this can now be tested on 

the real process. 

5.3 Generation of Controller 

After a satisfactory model has been created in DeltaV Predict, the expert option in DeltaV 

enables the creation of the model and the controller generation. DeltaV uses the model to 

provide default settings for controlling of the process. It is possible to modify these generated 

default controller parameters generated if not satisfactory. However, the default settings in 

most cases provide good responses. 

In cases where the default settings of the controller do not provide the desired robustness, 

tuning is required. The Penalty of move and the Penalty of Error are adjusted to meet user 

requirements. But caution must be exercised when asking these adjustments. A new 

controller generation and download is necessary after any change in these parameters. 

 

5.4 System Identification Using DSR 

The DSR is a subspace identification method. It is implemented in the DSR toolbox for 

MATLAB developed by David Di Ruscio. 

The DSR method will be used to identify a linear state space model using the measured input 

and output data from the process. The input and output data is simply fed into the DSR 

algorithm to generate a linear state space model. The model is subsequently validated by 

using a different set of data different from those used in the identification. 

5.4.1 Removing trends in Data 

Trends in data are non-zero constants or mean values or low frequency noises. It is very 

important to remove trends from the raw process data in order to get a suitable model. It is 

also imperative for the trends to satisfy the steady state relationship of the system[10]. The 

sample mean is usually used as an approximate value of the steady state trends. 

 𝑑𝑦𝑡 = 𝑦𝑡 − 𝑦
𝑜 (5.3) 

 𝑑𝑢𝑡 = 𝑢𝑡 − 𝑢
𝑜 (5.4) 

Where 𝑦𝑜 and 𝑢𝑜 are mean values expressed as  
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𝑦𝑜 = 

1

𝑁
∑𝑦𝑡

𝑁

𝑡=1

 
(5.5) 

 
𝑢𝑜 = 

1

𝑁
∑𝑢𝑡

𝑁

𝑡=1

 
(17.6) 

The model can then be identified from the adjusted data. 

5.4.2 System Identification from Real data 

Using DSR method, the first 15000 samples was used for the identification and the other 

15000 samples was used in the validation process. 

 

5.5 MPC with Integral action 

The diverse models used in implementation of MPC results in different algorithms of MPC. In 

[5], Di Ruscio presented an MPC controller for a MIMO system with integral action where the 

DSR method was used to identify the model. 

Using first principle a new set of data is simulated of the QTP to be used for the 

implementation in MPC with integral action. DSR system identification is used to develop a 

model of the process. The model is then used to define the prediction model.  

MPC from the DSR identified models has been compared from MPC formulations from 

models developed from first principle method (model free MPC), the MPC from DSR model 

was more robust, showed better and faster set point tracking [6]. The robustness and ease of 

implementation has resulted in its high relevance in recent years.  

The development of the MPC from the DSR identified model can be broken down into the 

following steps 

Given a process model of the form 

 𝑥𝑘+1 =  𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑣 (5.7) 

 𝑦𝑘 = 𝐷𝑥𝑘 +  𝑤 (5.8) 

 

Where xk  ∈  ℝ
n is the state vector, initial state  𝑥0,  uk  ∈  ℝ

r is the input vector,  yk ∈  ℝ
m  

is the output vector 

𝐴, 𝐵 and 𝐷 are identified subspace matrices system from DSR method based on trended 

input and output data. 
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v and w are unknown process and measurement noise vectors. v and w are not known and 

but can be eliminated by subtracting values of 𝑥𝑘 and 𝑦𝑘−1 from Equations (5.7) and (5.8). 

 𝑥𝑘 =  𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑣 (5.9) 

 𝑦𝑘−1 = 𝐷𝑥𝑘−1 +  𝑤 (5.1018) 

Further simplification leads to  

 ∆𝑥𝑘+1 =  𝐴∆𝑥𝑘 + 𝐵∆𝑢𝑘 (5.1119) 

 𝑦𝑘 = 𝑦𝑘−1 + 𝐷∆𝑥𝑘 (5.1220) 

 

Where ∆𝑥𝑘+1 = 𝑥𝑘+1 − 𝑥𝑘 and ∆𝑢𝑘 = 𝑢𝑘+1 − 𝑢𝑘 

 

The state space model can be derived by augmenting Equations (5.11) and (5.12) 

 
[
∆𝑥𝑘+1
𝑦𝑘

]
⏟    
�̃�𝑘+1

= [
𝐴 0𝑛×𝑚
𝐷 𝐼𝑚×𝑚

]
⏟      

�̃�

[
∆𝑥𝑘
𝑦𝑘−1

]
⏟  
�̃�𝑘

+ [
𝐵

0𝑚×𝑟
]

⏟    
�̃�

∆𝑢𝑘 
(5.13) 

 

  𝑦𝑘 = [𝐷 𝐼𝑚×𝑚]⏟      
�̃�

 [
∆𝑥𝑘
𝑦𝑘−1

]
⏟    

�̃�𝑘

 
(21) 

 

This leads to the state space model given by 

 �̃�𝑘+1 = �̃��̃�𝑘 + �̃�∆𝑢𝑘 (5.15) 

 𝑦𝑘 = �̃��̃�𝑘 (5.16) 

 

The Prediction model can then be defined as expressed as described in section 3.2.1.  
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6 Results (Modelling, Verification and Control) 

In this chapter, all results from the implementation done in chapter 5 both MatLab with the 

DSR method and DeltaV (FIR and the ARX) are presented. The model identification and 

verification will be done in DeltaV and also using the DSR method. 

6.1 Implementation in DeltaV 

Table 6-1 shows parameters for design of the step responses. The step responses are shown 

in Figure 6-1.  

 

  

  

Figure 6-1: Step Response models  
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        Table 6-1: Step Response Design 

MPC 

Parameter 

Pump 1 Pump2 

Level Tank1 𝐾 = 0.6𝑠𝑒𝑐 

𝑇1 = 16.9231 𝑠𝑒𝑐 

𝑇2 = 0𝑠𝑒𝑐 

𝜏 = 2𝑠𝑒𝑐 

𝐾 = 0.944099 

𝑇1 = 68.6007𝑠𝑒𝑐 

𝑇2 = 11.3993𝑠𝑒𝑐 

𝜏 = 4𝑠𝑒𝑐 

Level Tank2 𝐾 = 1.93264 

𝑇1 = 58.6844𝑠𝑒𝑐 

𝑇2 = 21.3156𝑠𝑒𝑐 

𝜏 = 6𝑠𝑒𝑐 

𝐾 = 1.87221 

𝑇1 = 55.3846𝑠𝑒𝑐 

𝑇2 = 0𝑠𝑒𝑐 

𝜏 = 6𝑠𝑒𝑐 

 

Where 𝑇1 is the first time constant, 𝑇2 is the second time constant, 𝜏 is the process dead time, 

and 𝐾 is the process gain. 

 

The step response model did not give a good representation of the dynamics of the process 

and this is evident in the verified models in Figure 6-2 and Figure 6-3 for the control output in 

tanks 1 and tanks 2 respectively. The squared error for the first controlled output is 3.38 and 

for the second controlled output 7.60 and hence the predicted models are relatively poor. 
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Figure 6-2: Actual and predicted model for control output 1 (Level in Tank1) 

 

 

Figure 6-3: Actual and predicted model for control output 2 (Level in Tank2).  

 

 



 

  

___ 

36 
 

In generating the controller, the default setting did not show good response because of the 

poor model of the process. This was somewhat expected. To improve the controller 

robustness, adjustments had to be made to the default setting.  The Penalty of move was 

adjusted for this purpose.  

To achieve good setpoint tracking, the penalty of move was altered for both of the 

manipulated variables.  

The controlled outputs (levels in tanks 1 and 2) are shown in Figure 6-4 and Figure 6-5 

respectively. 
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Figure 6-4:  Simulation for the MPC control for level in Tank 2 

 

Figure 6-5: Simulation for the MPC control for level in Tank 1. 

6.2 DSR 

The plot of the real and predicted model of the process is as shown in Figure 6-6. It is seen 

that the predicted model is very correctly represented. The script for the implementation in 

MATLAB is shown in Annex 3. 
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Figure 6-6:DSR identification results for real and predicted levels in Tanks 1 and 2. 

6.2.1 Model Performance Indices 

The model performance index between DSR and DeltaV is as shown in Table 6-2:.  

Table 6-2: MSE from DSR method 

Indices Tank 1  Tank2 

MSE (DSR) 0.1825 0.2195 

MSE(DeltaV) 3.3833 7.5966 

6.3 MPC from DSR Identified Model 

Due to the poor results from the control achieved in the DeltaV MPC, an implementation of 

the model free MPC with integral action in MATLAB was developed to control the QTP. A new 

set of data was simulated from first principle, for this purpose.   

The script for the implementation of the MPC in MATLAB is shown in Annex 2 and Annex 3. 
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The controller is as shown in Figure 6-7, Figure 6-8, Figure 6-9: MPC Output and Reference for 

Level in Tank 1Figure 6-9 , Figure 6-10. The matrices Q and R are varied to view how these 

weighting matrices affect the performance of the controller. 

 
 
 
 
 

 

Figure 6-7: MPC Output and Reference for Level in Tank 1. With matrices  𝑄 =  [
100 0
0 100

] 

and 𝑅 =  [
0.1 0
0 0.1

]and prediction horizon of 15secs and a sampling time of 0.1secs. The 

input constraints are 𝑈𝑚𝑖𝑛 = 0𝑉 and 𝑈𝑚𝑎𝑥 = 5𝑉 
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Figure 6-8: MPC Output and Reference for Level in Tank 2. With matrices  𝑄 =  [
100 0
0 100

] 

and 𝑅 =  [
0.1 0
0 0.1

]and prediction horizon of 15secs and a sampling time of 0.1secs. The 

input constraints are 𝑈𝑚𝑖𝑛 = 0𝑉 and 𝑈𝑚𝑎𝑥 = 5𝑉 
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Figure 6-9: MPC Output and Reference for Level in Tank 1. With matrices 

 𝑄 =  [
10000 0
0 10000

] and 𝑅 =  [
0.1 0
0 0.1

]and prediction horizon of 15secs and a sampling 

time of 0.1secs. The input constraints are 𝑈𝑚𝑖𝑛 = 0𝑉 and 𝑈𝑚𝑎𝑥 = 5𝑉 
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Figure 6-10: MPC Output and Reference for Level in Tank 2. With matrices  𝑄 =  [
100 0
0 100

] 

and 𝑅 =  [
0.1 0
0 0.1

]and prediction horizon of 15secs and a sampling time of 0.1secs. The 

input constraints are 𝑈𝑚𝑖𝑛 = 0𝑉 and 𝑈𝑚𝑎𝑥 = 5𝑉 

 

6.4 SISO system 

DeltaV MPC didn’t give good model representation of the QTP, there arose the need to 

compare the model identification of DeltaV Predict on a SISO system with a subspace system 

method (DSR). The 2 tank system was analyzed for this purpose. 

The 2 tank is process that is made up of 2 tanks, a reservoir for water storage, a pump 

controlled by a PID controller for filling the tank, two level transmitters that helps to measure 

the level of the two tanks, two solenoid valves and four level switches. The control objective 

in this process is to control the level of upper tank with the use of the pump. The input to the 

2-tank system is signal to the pump in volts and the output is the level in the lower tank.  

The laboratory 2-tank process is shown in Figure 6-11. 
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Figure 6-11: 2-tank Process 

6.4.1 Model Creation in DeltaV of the 2-tank 

The physical 2-tank plant is connected to DeltaV, as presented by Rune Andersen [21]. The 

system overview of the tank when connected to DeltaV is depicted in Figure 6-12.  After 

connection, DeltaV logs the input and output from the 2-tank and stores in the Custodian 

Historian and uses this logged data to create a step response model of the 2-tank process. 
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DeltaV work 
station

MPC 

2-TANK 
PROCESS

         Ethernet

AO Control signal 4-20mA 
(pump)

DO valve signal 
0/24VDC

DI level indicators
0/24VDC

AI Level mesurement
4-20mA

DeltaV controllers

24VDC Power supply Out  (4-20mA) 

Out  0/24 VDC

 

Figure 6-12: 2-tank Control using MPC in DeltaV [20] 

The verification results are as shown in Figure 6-13 showing plots of the actual and predicted 

model. 
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Figure 6-13: Model verification using DeltaV Predict of the 2-tank system showing actual and 

predicted models 

6.4.2 Controller Generation for the 2-tank process 

After a satisfactory model has been created, DeltaV automatically generates a controller for 

the process. DeltaV provides a simulation environment to test the controller first, and if it is 

working correctly, then it is then tested on the real plant. 

Very good set point tracking is achieved as seen in Figure 6-14. 
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Figure 6-14: MPC controller for the level in the 2tank process. 

 

6.4.3 System Identification in DSR 

To compare the model creation in DeltaV Predict with the DSR method of system 

identification, the data logged in DeltaV is exported to MATLAB for use in the DSR toolbox. A 

simple plot of the input and output is shown in Figure 6-15. The script for the implementation 

in MATLAB is as shown in Annex 4. 
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Figure 6-15: Input and output data for the 2-tank 

The predicted model in DSR is shown in Figure 6-16. 
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Figure 6-16: Model development using DSR method of the 2-tank system 

 

 

6.4.4 Model Comparison 

To compare the predicted models the MSE indices was used to compare both the DeltaV 

Predict and the DSR method for the 2-tank system. Table 6-3 shows the results from the 

comparison. DSR has a better MSE value. 

Table 6-3: Comparison of model performance indices for the 2-tank process 

Method                                                                          MSE 

DSR 0.0064 

DeltaV Predict 1.05741 

 



 

  

___ 

49 
 

7 Discussion of Results 

DeltaV model prediction is based on step responses of the input-output model of the process. 

The magnitude of the step change is very important in step response models. If the step input 

change is too small, the measured output may not change enough to develop a correct 

model, alternatively if the step input change is too large, the change in output may be too 

large and non-linear effects may set in. 

 

The step input change of the data used for the simulations in DeltaV was too small to properly 

capture the step response dynamics of the process and so the models representation of the 

QTP was not accurately captured. This problem should have been better handled if DeltaV 

had been connected to the real process.  

To make a step response change in the input variable, the process must be brought to a 

consistent and steady state change operating point. When the real plant is used for testing in 

DeltaV, the logging of values is integrated such that the input to the process is logged to 

ensure that a step response is realized for each input.  The pseudo random way DeltaV takes 

input is calculated so as to give better results. During testing on a physical plant, data that do 

not represent normal working condition can be excluded before the creation of the step 

response model creation. This ensures that   an optimal model of the process is realized. 

 

The importance of getting a good model of a process cannot be overemphasized as seen in 

the controller generation in DeltaV. The default settings showed very poor tracking, 

adjustments (tuning) had to be done to force the tracking of different reference values. This is 

seen from the very sharp changes in the manipulated variables in Figure 6-4 and Figure 6-5. 

On the other hand the DSR method handled the modeling very accurately. The DSR method 

involves identifying state space matrices from known input-output data of a process. The QTP 

model creation using the DSR system identification method showed very good results. The 

MSE from the DSR method was much lower than that achieved using DeltaV. The identified 

matrices (state space) from the DSR method were used to implement an MPC with integral 

action and very good set point tracking was achieved.  
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To further compare the MPC strategy in DeltaV, the 2tank process (a SISO system), was 

analyzed for this purpose. When DeltaV was connected to real plant of the 2-tank system, 

much better results were achieved. The input and output log of the data from the 2tank when 

connected to DeltaV clearly shows that the logging done in DeltaV is random (see Figure 

6-15).  

DeltaV handled the SISO system better than it did on the MIMO quadruple tank process. 

Comparing the MSE between models in DeltaV and DSR, even if the DSR was better for both 

the MIMO and SISO systems, the result from the SISO system was much more comparable. 

But overall, the DSR in both the MIMO and SISO systems showed better model predictions. 

 

The DSR handled both the MIMO and SISO systems very well. The model performance indices 

were very low when compared with the models from DeltaV MPC. 
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8 Conclusion and Recommendation 

Conclusion on the results achieved in this work is presented here, with recommendations for 

further work. 

8.1 Conclusion 

The non-linear model of the QTP was developed using simple mass balance equations.  The 

ability of DeltaV MPC in controlling the QTP using external historical data was investigated. 

Very poor step response models were achieved. The controller was tuned to successfully 

track the setpoint. 

DSR method was also used to identify models from the same input-output data of the QTP 

and a well fitted model was realized. The MSE showed lower values and hence a better 

model. 

DeltaV MPC was used to compare between prediction methods in DeltaV to that in DSR 

system identification methods. The DSR method produced better and more accurate 

representative models for both the QTP (MIMO)  and the 2-tank process (SISO). 

Using MPC with integral action, the quadruple tank was controlled and very robust control 

was achieved for the levels in the two tanks when compared to that achieved with DeltaV 

MPC. 

In summary, step response models are limited to some MIMO processes. On the other hand, 

state space model representations are easier, faster, shows better results and more versatile 

for different processes. DeltaV handles SISO systems better than MIMO systems. DSR shows 

optimal results for both MIMO and SISO systems. 

 

All the tasks as described in the task description have been successfully completed. However 

creating a communication interface between DeltaV and the QTP was not achieved because 

the QTP was undergoing refurbishment for a large part of the period of this study and as such, 

external data had to be used. 

8.2 Future Work 

A new QTP should be made available so that the data can be logged directly when connected 

to DeltaV. The communication should be made available from the Volts to 4-20mA so that 
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connection to DeltaV can be possible. The data logged in DeltaV can be imported to MATLAB 

for comparison with other system identification methods; the Prediction error method (PEM), 

N4SID methods can be analyzed for this purpose.  
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Annexes 

Annex 1: Project Task Description 

Annex 2: MATLAB implementation of MPC with Integral action 

Annex 3: MATLAB implementation of system identification for quadruple tank process 

Annex 4: MATLAB implementation of system identification for 2 tank process 
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Annex 1: Project Task description 

 

FMH606 Master's Thesis 

 
Title:       Model Predictive Control using DeltaV of the Quadruple Tank Process 

 

TUC supervisor:  David Di Ruscio 

 

External partner:  Rune Andersen. Emerson. 

 

Task description: 

 

1. Give a short overview of existing models for the Quadruple Tank (QT) process, both 

    system identification based ( e.g. as DSR) and first principles based models. 

2. It is of interest to fit some of the models to observed input and output process data. 

    Perform an input experiment on the QT-process and collect input and output data. Use 

    and compare the models upon each other. The MSE and IAE indices may be used for 

    comparison 

3. Investigate the ability to use the DeltaV control system and in particular the built in 

    MPC strategy to control the QT-process. 

4. Build a real time control and communication platform between the DeltaV system and 

    the QT-process. Perform step changes in the level references and illustrate the possible 

    efficiency of the real time control system. 

 

Task background: 

The QT-process is recently under reconstruction and rebuilding at the TUC laboratory. It 

would be of great interest to analyse the process for use with the DeltaV control system, and 

in particular the built in MPC strategy. Both the real laboratory process and numerical 

simulations with MATLAB may be used as parts of the work in this thesis. 
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Annex 2 
%========================================================================== 
%MatLab script for Implemetation of MPC with Integral action for the QTP 
% eobsv.m, prbs1.m, q2qt.m, scmat.m, ss2h.m functions all written by [David 

DiRuscio] 

% Reference http://www2.hit.no/tf/fag/sce4106/ovinger/ovinger.html 
% ------------------------------------------------------------------------- 
%HSN, Porsgrunn, Norway [29-04-2016] 
%========================================================================== 
clear all; 
% % Initial level in the tanks [cm] 
h1=12.4; 
h2=12.7; 
h3=1.8; 
h4=1.4; 
h=[h1,h2,h3,h4]'; 
 

dt = 1; 
time = 0: dt: 2500; 
N = length (time); 
um1= 3; um2=3.2; 

  
% Space for storing variables 
Y=zeros(N,4); 
U=zeros(N,2); 
u=zeros(N,2); 

  
%input using the pbrs function by Di Ruscio 

U=[3*ones(N,1)+0.1*prbs1(N,30,150) 3*ones(N,1)+0.1*prbs1(N,30,150)]; 
  

%Discretising using Euler 
for k=1:N     
    u=U(k,:)' 
    dhdt=TankSimData(time,h,u); 
    Y(k,:)=h'; 
    h=h+dt*dhdt; 
end 
u; 

  
Nid=N; 
Yid=Y(1:Nid,:) 
    Uid=U(1:Nid,:) 

 
%    Trending the data 

   
Uid=[U(1:Nid,1)-3.0 U(1:Nid,2)-3.0 ]; 
Yid=[Y(1:Nid,1)-12.3 Y(1:Nid,2)-12.8];     

     
[A,B,D,E,C,F,x0]=dsr(Yid,Uid,4,0); 

  
Ys=dsrsim(A,B,D,E,Uid,x0); 

  
l=size(A,1); 
m=size(B,2); 
n=size(D,1); 
% Matrics At, Bt and Dt 
At=[A zeros(l,n); D eye(n,n)]; 
Bt=[B;zeros(n,m)]; 
Dt=[D eye(n,n)]; 
% Model predictive control algorithm, 
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% Prediction horizon 
Np=15; 
% Simulation horizon 
N=615; 
% Weighting matrices 
Q=100*eye(2); R=0.1*eye(2); 
% Observability matrix OL and Toeplitz matrix HdL calculation by ss2h 

function.[David Di Ruscio] 
[HdL,OL,OLB]=ss2h(At,Bt,Dt,zeros(n,m),Np,0); 
FL=[OLB HdL]; 
Qt=q2qt(Q,Np); 
Rt=q2qt(R,Np); 
% Make matrices S and c in the relationship, u(k,L) %scmat function 
[S,c] = scmat(m,Np); 
% H as defined in equation (3.50) 
H=FL'*Qt*FL+Rt; 
% Defining inital values for simulation 
I_val=[11.4;12.5]; 
Hd=D*inv(eye(4)-A)*B; 
u_ss=inv(Hd)*I_val; 
I=eye(4); 
x_ss =inv(I-A)*B*u_ss; 
% Assigning variables 
u=u_ss; 
h=x_ss; 
u_old=u; h_old=h; y_old=D*h; 
% Make the references by using the function prbs1.m[David Di Ruscio] 
rand('seed',0),randn('seed',0); 
ref=[11.4*ones(N,1)+0.1*prbs1(N,100,100),12.5*ones(N,1)+0.1*prbs1(N,100,100

)]; 
% ref=[14*ones(N,1)+0.1*prbs1(N,70,70) 12*ones(N,1)+0.1*prbs1(N,70,70)]; 
% Used in Input amplitude constraints implementation. 
u_min=0; 
u_max=5; 
% Making for variables storage 
r1L=zeros(15,1); 
U=zeros(N-Np,2); 
Y=zeros(N-Np,2); 
for k=1:N-Np 
y=D*h; % output equation 
% Make the extended reference vector, r_(k,L) .[David Di Ruscio] 
rf =ref(k+1:k+Np,:); 
r1L=rf(1,:)'; 
for i=2:Np 
r1L=[r1L;rf(i,:)']; 
end 
% Computing MPC control 
xk=[h-h_old;y_old]; 
pL=OL*At*xk; 
% f as defined in equation (3.50) 
f=FL'*Qt*(pL-r1L); 
% For constrained MPC [Equation 2.8] 
a=[S;-S]; 
b=[u_max*ones(Np*m,1)-c*u_old;-u_min*ones(Np*m,1)+c*u_old]; 
% quadprog function for input amplitude constraints. [Equation 2.29] 
duf=quadprog(H,f,a,b); 
u=u+duf(1:m); 
u_old=u; 
% For plotting purpose store the variables. 
U(k,:)=u'; 
Y(k,:)=y'; 
% Feed control to process. 
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h_old=h; 
y_old=y; 
h=A*h+B*u; 
end 
% Plotted Results 
t=1:N-Np; 
% Level results for Tank 1. 
figure(1) 
subplot(3,1,[1,2]) 
plot(t, ref(1:N-Np,1),'r');hold on 
plot(t,Y(:,1)) 
ylabel('Level [cm]'); 
title('Reference and output level for Tank 1') 
legend('Reference r_k','Output y_k') 
grid on 
% Input Control signal for Tank 1 
subplot(3,1,3), 
plot(U(:,1)), 
xlabel('Time [s]'); 
ylabel('Voltage [V]') 
title('Input signal for Tank 1') 
grid on 
% Level results for Tank 2. 
figure(2) 
subplot(3,1,[1,2]) 
plot(t, ref(1:N-Np,2),'r');hold on 
plot (t,Y(:,2)) 
ylabel('Level [cm]'); 
title('Reference and output level for Tank 2') 
legend('Reference r_k','Output y_k') 
grid on 
% Input Control signal for Tank 2 
subplot(3,1,3), 
plot(U(:,2)), 
xlabel('Time [s]'); 
ylabel('Voltage [V]') 
title('Input signal for Tank 2') 
grid on 
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Annex 3 
%========================================================================== 
% DSR system Identification of quadruple tank process 

%HSN, Porsgrunn, Norway [29-04-2016] 

% dsr function written by [David DiRuscio] 
%==========================================================================  
load sys_data_09_03_2014.lvm 
sys_data_09_03_2014=sys_data_09_03_2014(10:end,:); 

  
N=size(sys_data_09_03_2014,1) 
Is=1; 
Y=[sys_data_09_03_2014(Is:N,2) sys_data_09_03_2014(Is:N,3)]; 
U=[sys_data_09_03_2014(Is:N,5) sys_data_09_03_2014(Is:N,4)]; 

  
save Y_4tank.dat -ascii Y 
save U_4tank.dat -ascii U 

  
ym=mean(Y) 
um=mean(U) 

  
Nid=15000; 

  
itrend=2; 
if itrend==1 
    Yid_RD=Y(1:Nid,:) 
    Uid=U(1:Nid,:) 
else 
    Yid_RD=[Y(1:Nid,1)-11.83 Y(1:Nid,2)-12.38]; 
    Uid=[U(1:Nid,1)-3.8 U(1:Nid,2)-3.4]; 

     
end 

  
[A,B,D,E,C,F,x0]=dsr(Yid_RD,Uid,4,0); 

  
Ys_RD=dsrsim(A,B,D,E,Uid,x0); 

  
figure(1) 
subplot(211), plot(U(:,1)) 
ylabel('u_1 [V]') 
subplot(212), plot(U(:,2)) 
ylabel('u_2 [V]') 
xlabel('Number of samples') 

 
figure(2) 
subplot(211), plot(Y(:,1)) 
ylabel('h_1 [cm]') 
xlabel('[Number of samples]') 
grid on 
subplot(212), plot(Y(:,2)) 
ylabel('h_2 [cm]') 
xlabel('[Number of samples]') 
grid on 

  
figure(3) 
subplot(211), plot([Yid_RD(:,1) Ys_RD(:,1)]) 
legend ('real', 'predicted'); 
ylabel('h_1 [cm]') 
grid on 
subplot(212), plot([Yid_RD(:,2) Ys_RD(:,2)]) 
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legend ('real', 'predicted'); 
ylabel('h_2 [cm]') 
xlabel('[Number of samples]') 
grid on 

 
%Model performance indices calculations 
err_h1=(Ys_RD(:,1)-Yid_RD(:,1)); 
err_h2=(Ys_RD(:,2)-Yid_RD(:,2)); 
IAE_dsr_h1= (sum(abs(err_h1))) 
IAE_dsr_h2= (sum(abs(err_h2))) 
MAE_dsr_h1= 1/Nid*(sum(abs(err_h1))) 
MAE_dsr_h2= 1/Nid*(sum(abs(err_h2))) 
ISE_dsr_h1= ((sum(err_h1).^2)) 
ISE_dsr_h2= ((sum(err_h2).^2)) 
RMSE_dsr_h1= 1/Nid*sqrt((sum(err_h1).^2)) 
RMSE_dsr_h2= 1/Nid*sqrt((sum(err_h2).^2)) 
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Annex 4 
%========================================================================== 
% Identification of 2 tank process 

% dsr function written by [David DiRuscio] 
% ------------------------------------------------------------------------- 
%HSN, Porsgrunn, Norway [29-04-2016] 
%========================================================================== 
Load data_2_tank.csv;  
N=641; 
Y=[u(Is:N,2)]; 
U=[u(Is:N,4)]; 
% Identification of 2 tank process 
ym=mean(Y) 
um=mean(U) 
Yid=[Y(1:N,1)-ym]; %trending data 
Uid=[U(1:N,1)-um];  %trending data    
[A,B,D,E,C,F,x0]=dsr(Yid,Uid,4,0); 
Ys_RD=dsrsim(A,B,D,E,Uid,x0); 
figure(1) 
subplot(211), plot(U(:,1)) 
ylabel('u [V]') 
subplot(212), plot(Y(:,1)) 
ylabel('h [cm]') 
xlabel('[Number of samples]') 
gridon 

 
figure(2) 
plot([Yid(:,1) Ys_RD(:,1)]) 
legend ('real', 'predicted'); 
ylabel('h [cm]') 
xlabel('[Number of samples]') 
gridon 

 

% Model Performance calculations 
err_h=(Ys_RD(:,1)-Yid(:,1)); 
IAE_dsr_h= (sum(abs(err_h1))) 
MAE_dsr_h= 1/Nid*(sum(abs(err_h1))) 
ISE_dsr_h= ((sum(err_h1).^2)) 
RMSE_dsr_h= 1/Nid*sqrt((sum(err_h1).^2)) 

 

 


